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Abstract
The temperature dependence of atomic scale friction is analyzed theoretically, in the framework
of a two-spring–two-mass generalization of the Prandtl–Tomlinson model, taking into account
an ultra-low value of the effective mass of the contact. A decrease of the friction force with
increasing temperature is predicted, that is unexpectedly strong, nontrivial in detail, and
accompanied by transitions between different regimes of sliding corresponding to different
scenarios of energy dissipation. The results indicate a much more pronounced role of thermally
driven dynamics in friction than has ever been imagined, and they should strongly stimulate
temperature-variable friction force microscopy experimentation.

1. Introduction

Should friction depend on temperature? Maybe yes, maybe
no, depending on ‘details’ like spatial and temporal scales
involved—this is the answer most expected to be given by
a physicist or engineer. However, if we readdressed the
question with respect to atomic scale friction, the expected
answer would be rather certain and positive. Indeed, atomically
small objects are known to be subject to intensive and variable
thermal motion which is likely to affect dissipation.

It may seem surprising, but the two-decade developments
of the science of nanotribology [1–4] have revealed only a very
modest role of thermal effects in friction. Typical experimental
observations (e.g. atomic stick–slip) are more or less easily
explained by models (e.g. the Prandtl–Tomlinson model [5, 6])
which lead, at least in a first approximation, to temperature-
independent results. Thermal effects manifested themselves in
rather subtle observations, like weak, logarithmic dependence
of friction force on velocity [7]. With very few exceptions [8],
most friction force microscopy (FFM) experiments, the main
tool for studying nanoscale friction [1], have been performed
at room temperature, and so far there have been no very
strong theoretical suggestions to perform temperature-variable
experiments.

The main message of this paper is to show that, under
many typical conditions, thermal effects play in fact dominant,
if not crucial, roles, thus rehabilitating initial expectations

of a naive physicist and strongly stimulating temperature-
variable experimentation. The dependence of atomic scale
friction on temperature is predicted to be nontrivial and
physically rich. For certain values of the system parameters
involved, even a very modest change of temperature can lead
to an order-of-magnitude change in friction. At different
temperatures one observes physically different regimes of
sliding which correspond to essentially different scenarios
of energy dissipation. Also nontrivial is the existence of
stochastic regimes when the mean friction force strongly
fluctuates, in spite of being averaged over a relatively large
sliding distance passed over by the system. All these features
are mainly concerned with an ultra-low value of the effective
mass of the nanocontact [9] which thus can exhibit intensive
thermally activated motion along the surface, including the
cases of its partial or complete delocalization [10].

A detailed introduction to the problem, as well as a
systematic analysis of the possible friction regimes, has been
given in our recent paper [11]. Here we extend the previous
work to the analysis of the temperature dependence of friction,
and we start in the next section with just a brief discussion of
the basic steps taken so far.

2. Effective mass of nanocontact and friction regimes

The friction force microscopy experiments are believed
to provide direct, atomic scale access to the origin of
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friction [1–4], since the FFM tip is thought to model the
behavior of a single asperity, similar to one of the many
asperities that make up the contact between two macroscopic
sliding bodies. Experiments with atomic resolution usually
demonstrate a periodic, sawtooth-like behavior of the lateral
force, with the period of the substrate lattice. This is called
atomic stick–slip (SS), reminiscent of the macroscale stick–
slip which is responsible, for instance, for the noise of a
creaky door or the voice of a violin. Atomic stick–slip
is usually thought to be at the origin of friction. It is
most easily explained using the traditional Prandtl–Tomlinson
model [5, 6], which considers an object (the tip) moving in
a periodic potential field formed by its interaction with the
substrate lattice, being dragged along the surface by a rigid,
external support, via a macroscopic spring (the cantilever),
which is at the same time used to measure the lateral force
experienced. Friction force is determined as the time average
of the instantaneous lateral force. A remarkable result of the
Prandtl–Tomlinson model is the prediction of a transition from
stick–slip to continuous, near-frictionless sliding; the regime is
often called superlubricity (SL). This transition takes place at
a critically low value of the relative potential corrugation, with
respect to the stiffness of the driving spring. The transition
from SS to continuous sliding has been observed in recent
experiments [12, 13].

In its simplest approximation, when one assumes
complete dissipation of the excess of energy in each slip
event, the Prandtl–Tomlinson model leads to temperature-
and velocity-independent results for the friction force.
Generalizations of the model, from dynamical modeling to
nonequilibrium statistical mechanics [15–21], have advanced
our understanding of atomic scale friction, in particular, a
certain role of thermal effects has been revealed. Thus,
thermal activation of the tip motion was understood to be
responsible for a weak, logarithmic-like dependence of friction
on scanning velocity, as first observed and explained in [7].

A basic problem, which has not been fully recognized yet,
is concerned with flexibility of the FFM tip. At first glance,
it seems a very hard object. However, the spring constant,
directly measured in experiments, is usually much smaller than
the stiffness K of the cantilever, being typically of the order
of several N m−1, i.e. of the order of the stiffness of atomic
bonds. There is no other option than associating this additional
flexibility of the system with the flexibility of the tip. This
inherent feature has long been believed not to complicate the
stick–slip physics. Actually, for a true understanding of the
dynamics, one must explore at least a two-mass–two-spring
generalization of the Prandtl–Tomlinson model (see figure 1),
with one real mass (M) accounting for the combined inertia
of the tip and cantilever, and the other effective mass (m)
associated with the bending motion of the tip. Importantly,
flexibility of the tip introduces an additional channel of
dissipation into the system [18]. Another manifestation of the
tip flexibility, as concluded from simulations of a two-spring
system [22], is in the duration of slip events. Generally, a two-
mass–two-spring system can exhibit a wealth of new dynamics.
The key question is how small the characteristic value is for the
effective mass m of the contact.

Figure 1. FFM measuring system (schematic) and the corresponding
two-mass–two-spring model. K is the spring coefficient of the
cantilever and k is the spring coefficient associated with the tip apex.
M is the mass of the cantilever + tip system and m is an effective
mass, representing the tip apex. The tip–surface interaction is
modeled by a sinusoidal potential with a corrugation U0 and with the
period a of the substrate lattice. The system is driven with a constant
velocity V .

According to our calculations [9], the bending deforma-
tion of an atomically sharp conical or pyramidal object (a good
model for the FFM tip) is associated with only a few hun-
dred atomic layers at its apex. This means that the effective
mass m ∼ 10−20 kg, while the typical mass M of the tip–
cantilever combination is about ten or more orders of mag-
nitude higher. Taking into account the spring coefficient of
the tip apex (k ∼ 1 N m−1) one finds the characteristic fre-
quency of its bending vibration (νt) in the order of several
GHz, while the characteristic cantilever frequencies (νc) fall
in the kHz to MHz range. A very strong hierarchy between
the effective masses and the effective frequencies involved in
the problem can lead to at least two important, potentially dra-
matic consequences. Firstly, the low frequency response of the
system as measured in FFM experiments from the motion of
the cantilever can be very different from the rapid motion that
is actually performed by the ultra-low effective mass, which is
really probing the surface. Secondly, the role of thermal ef-
fects in the tip–surface contact can be much stronger than one
could ever expect. In particular, under certain natural condi-
tions the system can be in a strongly counterintuitive regime of
friction, ‘stuck in slipperiness’ [9]. The cantilever shows seem-
ingly usual atomic stick–slip, while the tip–surface contact is
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completely delocalized (on the timescale of the tip–cantilever
motion) due to rapid, thermally activated motion of the tip apex
back and forth between the available potential wells.

The possibility of thermal contact delocalization and
an ultra-low value of the effective mass m have found
confirmation [10] in a good agreement between our
calculations and recent high time resolution experiment [22].
The possibility of rapid activated motion of the tip apex, even
at relatively high surface potential corrugations, is concerned
with an ultra-high characteristic frequency of the tip apex
vibrations (νt) which serves as ‘an attempt frequency’ of
thermally activated jumps. In combination with generally
complicated dynamics of the two-mass system motion; this
necessarily leads to the prediction [11] of a multitude
of physically different regimes of sliding, which represent
different scenarios of energy dissipation. Besides the known
regimes of ordinary stick–slip (SS) and superlubricity (SL),
which take place at sufficiently high and low contact potential
corrugations, respectively, there are a number of other regimes
in between. Stochastic stick–slip (SSS) is observed under
conditions when the tip apex exhibits several activated jumps
back and forth between the contact potential wells, per lattice
spacing passed over by the tip as a whole. Response of the
tip–cantilever turns out to be somewhat different in the cases
when the external spring (the cantilever) is relatively hard and
soft. It follows all the jumps of the tip’s apex in the former case
but cannot do so in the latter. An essential difference between
the cases of hard and soft external springs remains also under
conditions when the contact is completely delocalized by rapid
thermally activated jumps of the tip apex. The effective tip–
surface interaction potential, averaged over rapid motion of
the apex, remains periodic, with the period of the substrate
lattice, although its corrugation is reduced with respect to
the true contact potential corrugation [9]. A soft cantilever
exhibits seemingly usual stick–slip motion in such a potential,
in spite of an absolutely slippery contact, the regime of stuck
in slipperiness (SinS). In contrast, for a hard cantilever this
effective corrugation is not sufficient to produce mechanical
instabilities and it exhibits nearly continuous sliding, with
friction as low as in the case of superlubricity, the regime of
thermolubricity (TL). One other specific situation, the passive
apex regime (PA), arises for the contact potential corrugations
slightly above the critical corrugation for the transition to
superlubricity. The apex sees only one potential well for
any position of the tip–cantilever, thermally activated jumps
are impossible, and the apex and the tip as a whole move
simultaneously. Nevertheless, the combined two-mass system
can exhibit mechanical instabilities leading to the mean friction
force which is very low but slightly larger than in the case of
true superlubricity.

Below we will show how all these regimes manifest
themselves in the temperature dependence of atomic scale
friction.

3. Theoretical approach

Generally, the two-mass–two-spring system (see figure 1) is
described by two coupled equations of motion, e.g. of the

Langevin type, one for the cantilever + tip combination
(position X and mass M) and the other for the tip apex
(position x and effective mass m) moving with respect to X .
Since m ≪ M , and there is a great difference between the
two characteristic timescales involved, full description of the
system is problematic for computational reasons. Instead, we
use a hybrid numerical description that combines a numerical
solution of the Langevin equation for the full cantilever motion
with a Monte Carlo simulation of the thermally activated
motion of the tip’s apex. This enables one to follow, nearly
completely, the dynamic interplay between the rapid motion of
m and the slow motion of M .

Assuming for simplicity a one-dimensional geometry and
a sinusoidal tip–surface interaction, Us = U0

2 [1 − cos( 2π x
a )],

with corrugation U0 and the substrate lattice period a, the total
potential energy of the system can be written as

U(X, x, t) = K

2
(V t − X)2 + k

2
(X − x)2 + Us(x). (1)

Here X and x are the coordinates of the cantilever and the tip
apex, respectively; V t is the position of the support that moves
with the scanning velocity V ; K and k denote the stiffness of
the cantilever and of the tip (apex). Instantaneous lateral force
between support and cantilever, as measured in experiments, is
given by F = −K (V t − X), while the mean friction force is
its time average.

If m ≪ M , and hence there is a strong hierarchy of the
characteristic frequencies of the tip apex (νt) and the cantilever
(νc), νt � νc, the description can be simplified by averaging
over the rapid thermal motion of the apex around ‘lattice
positions’ xi . For each position of the cantilever X , the xi (X)

correspond to the local minima in the total potential (1) as a
function of x . The number of wells available to the apex is
determined by the Tomlinson-like parameter [9] γ = 2π2U0

ka2 .
If γ > 1, there are two or more wells. This is the origin of
stick–slip motion, and this also introduces the possibility of
thermally activated jumps of the tip apex between the wells.
Here, we restrict ourselves to the simplest approximation to
the jump rate,

ri j = r0 exp

(
− Ui j

kBT

)
, (2)

assuming the prefactor r0 = νt (transition state theory
approximation) with the tip frequency νt determined by the
second derivative of the total potential (1) in the vicinity of
xi , and with Ui j(X) the potential barrier between wells i and
j . Exploring a Monte Carlo algorithm for transitions of the tip
apex between positions xi and x j with rate ri j , one can describe
motion of the cantilever by solving numerically only a single
Langevin-type equation for M ,

M Ẍ = −k [X − xi(X)] − K (X − V t) − Mη Ẋ + ξ. (3)

The random force ξ is normalized as 〈ξ(t)ξ(t ′)〉 =
2MηnkBT δ(t − t ′). According to the fluctuation-dissipation
theorem for a particle interacting with a bath, ηn = η. In our
case, damping of the cantilever motion, η, is due to its indirect
coupling to the bath, via motion of the tip apex with respect
to the cantilever and with respect to the surface (damping
in the cantilever can be neglected [22]). The possible roles
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Figure 2. Mean friction force as a function of temperature, for
K = 60 N m−1 (hard external spring) and for different potential
corrugations: U0 = 0.8 eV (�), 0.5 eV (�), 0.35 eV (◦), 0.058 eV
(×), and 0.04 eV (�). System parameters used in calculations:
k = 3 N m−1, a = 0.25 nm, V = 10 nm s−1, M = 1 × 10−9 kg, and
m = 1 × 10−20 kg. All friction forces have been averaged over a
sliding distance of 10 lattice spacings. The lines are meant to guide
the eye. Thermal noise on the cantilever motion has been switched
off. Different regimes of friction are indicated: ordinary stick–slip
(SS), stochastic stick–slip (SSS), stuck in slipperiness (SinS),
thermolubricity (TL), passive apex regime (PA) and superlubricity
(SL). The inset shows the behavior of the friction force on a
linear scale.

of damping and thermal noise on the cantilever have been
discussed earlier [11]. We have checked that of a wide range
0.1 νc < η < 10 νc the results for the mean friction force do not
change considerably, although the instantaneous lateral force
exhibits stronger fluctuations at lower damping and higher
random force amplitude, as expected. The particular results
presented below (figures 2–5) correspond to the case of slightly
underdamped motion, η = 0.8 νc, while thermal noise on the
cantilever has been artificially switched off by taking ηn = 0,
in order to better visualize the inherent dynamics of the system
under interest.

Note that the simple approximation for the jump rate
prefactor in (2), r0 = νt, tacitly implies a moderate damping
of the tip apex motion, and this is the only principal physical
assumption made above. Generally, as follows from Kramers-
like theories of activated processes [23], the prefactor depends
on the particle’s coupling to the bath; in our case this suggests
dependence of r0 on damping of the tip apex motion with
respect to the cantilever (ηac) and with respect to the surface
(ηas). The traditional, transition state theory approximation
used here corresponds to the case when max{ηac, ηas} ∼ νt.

An additional restriction is concerned with the discrete
jump picture implied in (2), which is justified when the barriers
between relevant potential wells are high with respect to kBT .
The results of calculations presented below correspond to
sufficiently high (actually very typical) potential corrugations

Figure 3. Similar to figure 2, but for a soft cantilever with a spring
coefficient of K = 6 N m−1. Crosses (×) correspond to potential
corrugation of U0 = 0.05 eV. All other parameters are as in figure 2.

U0 > 0.3 eV, for which the discrete description of the tip apex
motion remains justified over a wide range of temperatures
considered. For comparison, temperature-independent results
for very low potential corrugations will also be presented, for
the case when γ < 1 and there are no activated jumps of the
tip apex at all.

4. Temperature dependence of atomic scale friction

The behavior of the mean friction force as a function of
temperature is shown in figures 2 and 3 for different contact
potential corrugations and for two cases of relatively hard
(K = 60 N m−1) and soft (K = 6 N m−1) external
springs, respectively. Both cases are typical for modern
experiments [12–14, 22]. Calculations have been performed
for very typical values of all the other system parameters
involved: tip stiffness k = 3 N m−1, substrate lattice spacing
a = 0.25 nm, scanning velocity V = 10 nm s−1, the cantilever
mass M = 1 × 10−9 kg. The effective mass of the contact has
been taken as m = 1 × 10−20 kg, as calculated in [9]. The
friction force has been averaged over a sliding distance of ten
substrate lattice spacings passed over by the tip.

As expected [11], the behavior of the system turns out
to be qualitatively different for the hard (figure 2) and soft
(figure 3) external springs, in view of different responses of the
cantilever to thermally activated motion of the tip apex. For a
softer cantilever, its reaction time is somewhat larger, and the
distance is essentially larger between its equilibrium positions
corresponding to different lattice positions of the apex.

In both cases, one observes decreasing friction with in-
creasing temperature, provided the contact potential corruga-
tion is not too small. Clearly, when two or several surface
wells are accessible for the tip apex (γ > 1), its thermally
activated jumps between the wells, more frequent at higher
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Figure 4. Lateral force between the cantilever and support as a
function of its position, V t/a, for a hard external spring with
K = 60 N m−1, potential corrugation U0 = 0.5 eV, and all other
parameters as in figure 2. Calculation results are shown for
temperatures 200 K (a), 350 K (b) and 700 K (c). Corresponding
friction regimes are indicated. Thermal noise on the cantilever
motion has been switched off in order to better visualize the inherent
dynamics of the system. In panel (c), the positions of the tip apex
relative to the support, (V t − x)/a, are also shown to demonstrate
thermal contact delocalization (gray lines). Note that the time
resolution in the plotted tip apex positions is too coarse for
displaying all calculated jumps.

temperatures, effectively ‘smooth’ the contact. This is in con-
trast to temperature-independent results at very low corruga-
tions, when only one well is seen by the apex for any position
of the support (γ < 1) and thermal activation does not take
place. Besides these features, that could be anticipated, there
are really nontrivial results.

Thus, one observes that thermal effects can be very strong,
especially in the case of a hard cantilever. For instance, for
the surface corrugation U0 = 0.5 eV, in a temperature range
slightly below 300 K (see figure 2) a modest change of T
by several tens degrees causes an order-of-magnitude change
of friction; for U0 = 0.35 eV the corresponding temperature
range is met below 200 K. Clearly, such a strong ‘thermal
lubrication’ is related to a huge value of the attempt frequency
of activated jumps of the tip apex, as a consequence of its ultra-
low effective mass.

Even more surprising is alternation of the temperature
intervals with stronger and weaker variation of the friction
force. The nontrivial shape of the curves Ffriction(T ), in
the cases of both figures 2 and 3, indicate transitions
between different regimes of sliding corresponding to different
scenarios of energy dissipation.

Figure 5. Similar to figure 4, but for a soft cantilever with a spring
coefficient of K = 6 N m−1. Calculation results are shown for
U0 = 0.5 eV and for temperatures 200 K (a), 350 K (b) and
700 K (c).

Maybe most unexpected, at first glance at least, are the
strong fluctuations of the friction force seen in certain intervals
of temperature, in spite of averaging over a relatively long
distance passed along the surface (ten lattice spacings in our
case). For instance, for the hard external spring and U0 =
0.5 eV, an unstable friction force is met in a temperature range
between 300 and 600 K, where it varies—from one run to
the other—over more than one order of magnitude, while at
lower and higher temperatures, friction is stable (see figure 2).
Also counterintuitive is that stronger fluctuations are observed
for the harder cantilever but not for the softer one (compare
figures 2 and 3). For higher potential corrugations the range of
instability is seen to move towards higher temperatures.

One other counterintuitive observation is concerned with
the crossover between the curves in figure 3, the case of
soft cantilever. Friction can be stronger for weaker potential
corrugation (i.e. for a smoother contact), as for instance for
U0 = 0.35 eV with respect to 0.5 eV in a temperature range
around 400 K. This effect has already been met and explained
in our previous work [11].

All the features summarized above are concerned with a
multitude of different regimes of friction [11] and transitions
between them with changing temperature. We can visualize
these regimes, since, within the computational scheme used
by us, one can follow both the slow motion of the friction
sensor M (that is recorded in FFM experiments) and the
rapid dynamics of the effective mass m which is actually
probing the substrate. As illustrated in figure 4, in the
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case of a hard external spring, the decrease of friction with
increasing temperature is accompanied by transitions from
ordinary stick–slip (SS) to stochastic stick–slip (SSS) and
then to thermolubricity (TL). In the case of a soft cantilever
(figure 5), the system goes from SS to SSS and then to stuck in
slipperiness (SinS).

If the contact potential corrugation is not too small, any
system at sufficiently low temperatures is in the ordinary stick–
slip regime; see figures 4(a) and 5(a). In this case, as seen
from the insets to figures 2 and 3, friction force decreases
nearly linearly with temperature increase. The physics behind
is simply the same as discussed earlier [7, 16, 17], in the
framework of the one-spring Tomlinson model, with respect
to the velocity dependence of the friction. Thermal activation
always initiates the system to start slipping somewhat earlier
than the positions of mechanical instability are reached. The
new feature brought out by the two-spring model with an ultra-
low effective mass of the contact is that the slipping and, hence,
energy dissipation actually have two steps. First, part of energy
(which has been stored in the deformed tip) is dissipated during
rapid slip of the tip apex, on the timescale of (νt)

−1. Then the
rest of energy (stored in the cantilever) is dissipated during the
slip of the cantilever, on the timescale of (νc)

−1.
With increasing temperature, the behavior of the system

becomes complicated by the occurrence of a number of
activated jumps of the apex back and forth between the
accessible potential wells, per substrate lattice period passed
over by the cantilever. As seen in figure 4(b), the hard
cantilever exhibits multiple slips back and forth along the
surface. Each of these slips directly follows corresponding
jump of the apex (not shown here). As a consequence,
the mean friction force is not only very low in this regime,
but it strongly fluctuates, in view of stochastic nature of
thermally activated jumps. For higher potential corrugations
this stochastic stick–slip regime is met at higher temperatures
(see figure 2), in accordance with equation (2). In the case of a
soft external spring, the manifestation of this stochastic regime
is somewhat different. A soft cantilever cannot follow rapid
jumps of the tip apex and exhibits single slips (see figure 5(b)),
like in the ordinary stick–slip regime. The response to the
jumps of the apex is seen as relatively weak fluctuations of
the instantaneous force at the sticking parts of the cycle. As a
consequence, fluctuations of the mean friction force are still
there in this SSS regime (see figure 3), but they are more
modest than in the case of a hard cantilever.

At higher temperatures the behavior changes drastically.
The contact is seen to exhibit very rapid activated jumps
between the accessible lattice positions (gray lines in
figures 4(c) and 5(c)), thus being nearly completely delocalized
on the timescale of the scanning. (Note that in view of a finite
time resolution in these figures not all jumps of the apex are
seen.) It comes as no surprise that the massive friction sensor
is not able to follow these rapid jumps at all, but exhibits
fluctuating but on average very regular behavior (black lines
in figures 4(c) and 5(c)). This resulting behavior depends
on the external spring stiffness (see section 2). In the case
of hard cantilever, this is a continuous sliding (figure 4(c))
which leads to a very small friction force, the regime of

thermolubricity. Increase of temperature in this regime results
in a smoother behavior of the sensor (smaller fluctuations of the
instantaneous lateral force), but has little effect on the mean
friction force, as is indeed seen in figure 2. In the case of a
soft external spring, the cantilever exhibits specific stick–slip
motion (figure 5(c)), the regime of stuck in slipperiness. The
mean friction force is not too small (in contrast to the previous
case), and it decreases with further increase of temperature, as
seen in figure 3. This last effect is entropic in nature [10] and
it can be understood as a decrease of the corrugation of the
effective tip–surface interaction averaged over rapid activated
motion of the apex.

5. Concluding remarks

The results presented above have been obtained using very
typical values of all the system parameters involved. The only
new and essentially important ingredient is an ultra-low value
of the effective mass of the nanoscale contact (m ∼ 10−20 kg)
which is thus ten of more orders of magnitude smaller than the
mass (M) of the macroscopic friction sensor. This is a very
rapid activated motion of m and the corresponding, partial or
complete, delocalization of the contact which are responsible
for the puzzling behavior of friction observed. Importantly, the
assumption of the low value of m is well supported. First, it
has been concluded from model calculations [9], being directly
related to an atomically small stiffness of FFM tips. Since in
all experiments where this parameter could be controlled the
value of k was in the range of several N m−1, regardless of the
tip material and mode of preparation, the result seems rather
universal. Second, it has found a good confirmation [10] in
an excellent agreement between the calculated friction force
behavior and some observations of a recent, high resolution
FFM experiment [22].

Our results will we hope strongly stimulate temperature-
variable FFM experimentation. In fact, this work adds one
other, most impressive example to a series of our recent
observations [19, 9–11] that the role of thermal effects in
atomic scale friction is crucial. Most importantly, there must
be a rich variety of physically different friction regimes related
to different types of contact delocalization, and actually they
represent different scenarios of energy dissipation.

A strong variation of friction with temperature has been
observed in a very recent FFM experiment [8]. Remarkably,
one can find a high degree of similarity between the qualitative
behavior Ffriction(T ) reported [8] and our predictions shown in
figures 2 and 3. More detailed, quantitative measurements are
necessary for comparison between the theory and experiment.
Nevertheless, at this stage, one certainly can already speculate
about the manifestation of different regimes of friction in the
experiment.

Although direct experimental verification of most of our
observations is still lacking, one other, far-reaching speculation
can be advanced. It is common belief that an FFM tip models
a single nanoasperity, one of those that establish the contact
between macroscopic sliding bodies. If so, our results suggest
that there is a much more pronounced role of thermally driven
dynamics in macroscopic sliding than has ever been imagined.
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